วันอังคารที่ ๑๑ กันยายน พ.ศ. ๒๕๕๐
มัลติแฟกทอเรียล เป็นฟังก์ชันที่เขียนอยู่ในรูปแบบ n!, n!! หรือมีเครื่องหมายแฟกทอเรียลมากกว่านั้น
n!! หมายถึง ดับเบิลแฟกทอเรียล ของ n ซึ่งนิยามโดย
ตัวอย่างเช่น 8!! = 2 · 4 · 6 · 8 = 384 and 9!! = 1 · 3 · 5 · 7 · 9 = 945 ลำดับของดับเบิลแฟกทอเรียล สำหรับ n = 0, 1, 2,... ได้แก่
1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, ...
จากนิยามดังกล่าวทำให้สามารถหาดับเบิลแฟกทอเรียลของจำนวนเต็มลบได้คือ
ลำดับของดับเบิลแฟกทอเรียลสำหรับ n = -1, -3, -5, -7,... คือ
1, -1, ⁄15, ...
เอกลักษณ์ของดับเบิลแฟกทอเรียลได้แก่
ฟังก์ชันมัลติแฟกทอเรียลอื่นๆ ที่มีเครื่องหมายแฟกทอเรียล k เครื่องหมาย มีนิยามโดย
สมัครสมาชิก:
ส่งความคิดเห็น (Atom)
ไม่มีความคิดเห็น:
แสดงความคิดเห็น